
SVR LAB IV SEM(2021-22) V20

LAB MANUAL

STATISTICAL VISUALIZATION USING R

List of Experiments

1. Demonstrate the basic math functions in R

2. Demonstrate Vector operations in R

3. Demonstrate Matrix operations in R

4. Demonstrate Array operations in R

5. Demonstrate Dataframes in R

6. Demonstrate Lists in R

7. Illustrate the following controls statements in R

i. if and else

ii. ifelse

iii. switch

8. Demonstrate for and while loops in R

9. Demonstrate importing and exporting data using R

10. Illustrate the descriptive statistics using summary() in R

11. Demonstrate the following statistical distribution functions in R:

i. Normal Distribution

ii. Binomial Distribution

iii. Poisson Distribution

iv. Chi Square Distribution

12. Illustrate the following basic graphs in R:

i. Bar plots

ii. Pie Charts

iii. Histograms

iv. Kernel density plots

v. Boxplots

vi. Dotplots

13. Illustrate the Correlation and Covariance analysis using R

14. Illustrate the different types of t-tests using R

15. Illustrate the ANOVA test using R

Introduction to R

R is an open source programming language and software environment for statistical computing

and graphics. The R language is widely used among statisticians and data miners for developing

statistical software and data analytics tools. It is modelled after S & S-plus, developed at AT&T labs

in late 1980s. R project was started by Robert Gentleman and Ross Ihaka Department of Statistics,

University of Auckland (1995). Currently maintained by R core development team – an international

team of volunteer developers (since 1997).

Features of R:

 R is an interpreted language; users typically access it through a command-line interpreter.

 R is a well-developed, simple and effective programming language which includes

conditionals, loops, user defined recursive functions and input and output facilities.

 R has an effective data handling and storage facility.

 R provides a suite of operators for calculations on arrays, lists, vectors and matrices.

 R provides a large, coherent and integrated collection of tools for data analysis.

 R provides graphical facilities for data analysis and display either directly at the computer or

printing at the papers.

R & R Studio Installation:

A comprehensive R Archive Network is present at https://cran.r-project.org/, where once can

download R for any platform.

Installing R on windows PC :

 Use internet browser to point to: http://mirror.aarnet.edu.au/pub/CRAN

 Under the heading Precompiled Binary Distributions, choose the link Windows.

 Next heading is R for Windows; choose the link base.

 Click on download option(R 3.4.1 for windows).

 Save this to the folder C:\R on your PC.

 When downloading is complete, close or minimize the Internet browser.

 Double click on R 3.4.1-win32.exe in C:\R to install.

Installing R on Linux:

 Use the command: sudo apt-get install r-base-core

R-Studio's IDE is a set of integrated tools designed to help you be more productive with R. It

includes a console, syntax-highlighting editor that supports direct code execution, and a variety of

robust tools for plotting, viewing history, debugging and managing your workspace.

Installing R-Studio:

 Go to www.rstudio.com and click on the "Download RStudio" button.

https://cran.r-project.org/
http://mirror.aarnet.edu.au/pub/CRAN

 Click on "Download RStudio Desktop. "

 Click on the version recommended for your system, or the latest Windows version, and

save the executable file. Run the .exe file and follow the installation instructions.

Figure 1: R-Studio IDE

Exp. 1: Demonstrate the basic math functions in R

Aim: To understand about operators, variable, built-in constants, built-in functions in R and how to

execute basic mathematical operations in R.

Operators: An operator is a symbol that tells the compiler to perform specific mathematical or logical

manipulations. R language is rich in built-in operators and provides following types of operators.

Operator Type Operators

Arithmetic Operators +, -, *, /, %%, %/%, ^

Relational Operators <, >, ==, <=, >=, !=

Logical Operators &, |, !, &&, ||

Assignment Operators = or <- or <<- & ->, ->>

Miscellaneous Operators :, %in%, %*%

Arithmetic Operators:

> 3+5

[1] 8

> 12 + 3 / 4 – 5 + 3*8

[1] 31.75

> (12 + 3)/ 4 – 5 + 3*8

[1] 22.75

> ((12+3)/(4 – 5) +3)*8

[1] -96

> 256%%13

[1] 9

> 256%/%13

[1] 19

>6^3

[1] 216

Relational Operators:

> 3<5

[1] TRUE

> 6>9

[1] FALSE

> 5==6

[1] FALSE

> 12!=52

[1] TRUE

>5<=6

[1] TRUE

>125>=50

[1] TRUE

Logical Operators:

> TRUE&TRUE

[1] TRUE

> TRUE&FALSE

[1] FALSE

> FALSE&TRUE

[1] FALSE

> FALSE&FALSE

[1] FALSE

> TRUE|TRUE

[1] TRUE

> TRUE|FALSE

[1] TRUE

> FALSE|TRUE

[1] TRUE

> FALSE|FALSE

[1] FALSE

>!TRUE

[1] FALSE

Variables: A variable provides us with named storage that our programs can manipulate. A variable

in R can store an atomic vector, group of atomic vectors or a combination of many R objects. A valid

variable name consists of letters, numbers and the dot or underline characters. The variable name

starts with a letter or the dot not followed by a number.

 Assignment Operators:

> x=10

>y<-15

>18->z

 Built-in Constants

>LETTERS ##the 26 upper-case letters of the Roman alphabet;

[1] "A" "B" "C" "D" "E" "F" "G" "H" "I" "J" "K" "L" "M" "N" "O" "P" "Q"

[18] "R" "S" "T" "U" "V" "W" "X" "Y" "Z"

>letters ##the 26 lower-case letters of the Roman alphabet;

[1] "a" "b" "c" "d" "e" "f" "g" "h" "i" "j" "k" "l" "m" "n" "o" "p" "q"

[18] "r" "s" "t" "u" "v" "w" "x" "y" "z"

>month.abb ##the three-letter abbreviations for the English month names;

[1] "Jan" "Feb" "Mar" "Apr" "May" "Jun" "Jul" "Aug" "Sep" "Oct" "Nov""Dec"

>month.name ##the English names for the months of the year;

[1] "January" "February" "March" "April" "May"

[6] "June" "July" "August" "September" "October"

[11] "November" "December"

>pi ##the ratio of the circumference of a circle to its diameter.

[1] 3.141593

 Built-in Functions (Math)

>abs(-4)

[1] 4

>sqrt(25)

[1] 5

>ceiling(5.7)

[1] 6

>ceiling(4.2)

[1] 5

>floor(3.3)

[1] 3

>floor(10.75)

[1] 10

>trunc(2.5)

[1] 2

>round(3.475, digits=2)

[1] 3.48

>log(2,10)

[1] 0.30103

>log(2, base=10)

[1] 0.30103

>log10(2)

[1] 0.30103

>log(2)

[1] 0.6931472

>exp(4)

[1] 54.59815

>cos(pi)

[1] -1

>sin(pi)

[1] 1.224606e-16~0

>tan(pi/4)

[1] 1

Exp. 2: Demonstrate Vector operations in R

Aim: To experiment with vectors, the most basic data type/objects of R.

First of all, What is meant by Data Type?A variable can be used for storing various kinds of data

like character, wide character, integer, floating point, double floating point, Boolean etc.In contrast to

other programming languages like C and java in R, the variables are not declared as some data

type.The variables are assigned with R-Objects and the data type of the R-object becomes the data

type of the variable.

There are many types of R-objects. The basic data types are:

 Boolean/Logical : TRUE, FALSE

 Numeric : 2, 5, 10.6

 Integer : 2L, 5L, 10L

 Complex : 2+5i

 Character : "a", "u", "all", "SVEC", "TRUE", '10.6', 'VASAVI'

The advanced data types or data structures in R Language are:

 Vectors

 Lists

 Matrices

 Arrays

 Data Frames

Vectors:

The most basic R data objects and there are six types of atomic vectors. Even when you write just

one value in R, it becomes a vector of length 1.Vectors in R are used to hold multiple data values of

the same type.

Creating a vector:There are different ways of creating vectors. Generally, we use 'c' to combine

different elements together.We can also create a numerical vector using colon operator. A colon

operator always generate a sequence with step size 1 or -1. To create a numerical sequence vector

with a specific step size we can useseq().

Ex:

>X <- c(61, 4, 21, 67, 89, 2)

>X

[1] 61 4 21 67 89 2

>Y=c(“S”, “V”, “E”, ‘C’)

> Y

[1] "S" "V" "E" "C"

>Z=c(“SVEC”, “CSE”)

> Z

[1] "SVEC" "CSE"

>v1 <- 5:13

>v1

[1] 5 6 7 8 9 10 11 12 13

>v2 <- 6.6:12.6

>v2

[1] 6.6 7.6 8.6 9.6 10.6 11.6 12.6

>v3 <- 11.4:3.8

>V3

[1] 11.4 10.4 9.4 8.4 7.4 6.4 5.4 4.4

>v3 <- seq(5, 9)

>v3

[1] 5 6 7 8 9

>v4 <- seq(5, 9, 0.4)

>v4

[1] 5.0 5.4 5.8 6.2 6.6 7.0 7.4 7.8 8.2 8.6 9.0

>v5<- seq(5, 9, by=0.4)

>v5

[1] 5.0 5.4 5.8 6.2 6.6 7.0 7.4 7.8 8.2 8.6 9.0

Accessing a Vector: Elements of a Vector are accessed using indexing. The [] brackets are used for

indexing. Indexing starts with position 1.Giving a negative value in the index drops that element from

result.TRUE, FALSE can also be used for indexing.

Ex:

>X <- c(61, 4, 21, 67, 89, 2)

>X[1]

[1] 61

>X[4]

[1] 67

>X[c(1,3)]

[1] 61 21

>X[-2]

[1] 61 21 67 89 2

>X[c(TRUE,TRUE,FALSE,FALSE,TRUE,FALSE)]

[1] 61 4 8

Manipulating a Vector:An element of a vector can be altered using the indexing.Two vectors of same

length can be added, subtracted, multiplied or divided element by element giving the result as a vector

output. If the length of the vectors are not same the short vector will be replicated. There are various

inbuilt functions that can be performed on a vector.

Ex:

>V1 <- c(61, 4, 21, 67, 89, 2)

>V1[2]=10

>V1[c(1,3)]=c(25,36)

>V1

[1] 25 10 36 67 89 2

>V2 <- c(6, 24, 43, 2, 8, 2)

>V3<-c(10,25)

>V1+V2

[1] 31 34 79 69 97 4

>V1*V3

[1] 250 250 756 2144 890 50

Warning message:

In V1 * V3 :

longer object length is not a multiple of shorter object length

>length(V1) #Length of the Vector

[1] 6

>sort(V2) #Shorts elements of a Vector

[1] 2 2 6 8 24 43

>rep(V1,2) #Creates a vector by Repeating given Vector.

[1] 25 10 36 67 89 2 25 10 36 67 89 2

>is.vector(V1) #Tells whether the object is vector or not

[1] TRUE

>any(V1>50) #Checks whether any element satisfy the given condition

[1] TRUE

>all(V1>10) #Checks whether all elements satisfy thegiven condition

[1] FALSE

Exp. 3: Demonstrate Matrix operations in R

Aim: To experiment with matrices, a two-dimensional data type/objects of R.

Matrices are the R objects in which the elements are arranged in a two-dimensional rectangular

layout.They contain elements of the same atomic types.

Creating and Accessing a Matrix: A Matrix is created using the matrix() function. We can use the

indexes (starting with 1) to access a row or a column or an element. One can also createan empty

Matrix without data and specify the elements individually later. We can add names to rows and

columns and use them to access a row or a column or an element.

Syntax: matrix(data, nrow, ncol, byrow, dimnames)

Where

data is the input vector which becomes the data elements of the matrix.

nrow is the number of rows to be created.

ncol is the number of columns to be created.

byrow is a logical clue. If TRUE then the input vector elements are arranged by row.

dimname is the names assigned to the rows and columns.

 Ex:

>P <- matrix(c(1,2,3,4,5,6,7,8,9), nrow = 3, byrow = TRUE)

>P

 [,1] [,2] [,3]

[1,] 1 2 3

[2,] 4 5 6

[3,] 7 8 9

>P[1,] #First Row

[1] 1 2 3

>P[,3] #Third Col

[1] 3 6 9

>P[2,3] #2nd Row, 3rd Col Element

[1] 6

 >rownames=c(“r1”, “r2”, “r3”)

 >colnames=c(“c1”, “c2”, “c3”)

 >P <- matrix(c(1,2,3,4,5,6,7,8,9), nrow = 3, byrow = TRUE,

 dimname=list(rownames,colnames))

 >P

 c1 c2 c3

r1 1 2 3

r2 4 5 6

r3 7 8 9

>P[“r1”,] #Row with “r1” as name, i.e., 1st Row

c1 c2 c3

1 2 3

One can join multiple vectors or matrices row wise or column wise using rbind() or cbind() to

create a matrix.

 >X=c(1,2,3,4,5)

>Y=11:15

>Z=c(24,10,23,22,43)

>cbind(X, Y, Z)

 X Y Z

[1,] 1 11 24

[2,] 2 12 10

[3,] 3 13 23

[4,] 4 14 22

[5,] 5 15 43

>rbind(X, Y, Z)

[,1] [,2] [,3] [,4] [,5]

X 1 2 3 4 5

Y 11 12 13 14 15

Z 24 10 23 22 43

Matrix Operations: We can use any operators to perform element by element operations on matrices

of equal dimensions also. There are also some matrix specific operations like dim(), t(), det() etc.

 >M <- matrix(c(1,2,3,4), nrow = 2, byrow = TRUE)

>P <- matrix(c(1,2,3,4,5,6,7,8,9), nrow = 3, byrow = TRUE)

>Q<- matrix(c(11,12,13,14,15,16,17,18,19), nrow = 3, byrow = TRUE)

>P+Q

[,1] [,2] [,3]

[1,] 12 14 16

[2,] 18 20 22

[3,] 24 26 28

>M

 [,1] [,2]

[1,] 1 2

[2,] 3 4

>t(M) #Transpose

 [,1] [,2]

[1,] 1 3

[2,] 2 4

>diag(M) #diagnol of M

[1] 1 4

>I=diag(3) #identity matrix of size 3x3

>I

 [,1] [,2] [,3]

[1,] 1 0 0

[2,] 0 1 0

[3,] 0 0 1

>dim(M) #dimensions of M

[1] 2 2

>det(M) #deteriment of M

[1] -2

>solve(M) #Inverse of M

[,1] [,2]

[1,] -2.0 1.0

[2,] 1.5 -0.5

Exp. 4: Demonstrate Array operations in R

Aim: To create an Array, access and manipulate the elements of an array

An Array is a multidimensional vector. They contain elements of the same atomic types.An array

in R can have one, two or more dimensions.A two-dimensional array is similar to a matrix.

Creating and Accessing an Array: They are created with an array function. Use the indeces (starting

with 1) to access anydimension.

Syntax: myarray<- array(data, dim, dimnames)

Where

data is the input vector which becomes the data elements of the matrix.

dim is a vector of dimensions. Ex: c(2,3,4) means 2 is row index, 3 is column index, 4

is outer dimension.

dimname is the names assigned to the rows and columns.

Ex:

>M <- array(c(1,2,3,4,5,6,7,8), dim=c(2,2,2))

>M

, , 1

 [,1] [,2]

[1,] 1 3

[2,] 2 4

, , 2

 [,1] [,2]

[1,] 5 7

[2,] 6 8

> v1 <- 1:9

> v2 <- 11:19

>col.names<- c("Item","Serial","Size")

>row.names<-c("Server","Network","Firewall")

>matrix.names<- c("DataCenter EU","DataCenter US")

>result <- array(c(v1,v2),dim=c(3,3,2), dimnames= list(row.names, col.names,

matrix.names))

>result

, ,DataCenter EU

 Item Serial Size

Server 1 4 7

Network 2 5 8

Firewall 3 6 9

, ,DataCenter US

 Item Serial Size

Server 11 14 17

Network 12 15 18

Firewall 13 16 19

>A <- array(1:12, dim=c(2,2,3))

>A[1,,]

 [,1] [,2] [,3]

[1,] 1 5 9

[2,] 3 7 11

>A[,2,]

 [,1] [,2] [,3]

[1,] 3 7 11

[2,] 4 8 12

>A[,,3]

 [,1] [,2]

[1,] 9 11

[2,] 10 12

>A[1,2,]

[1] 3 7 11

>A[1,2,2]

[1] 7

>result["Server", ,"DataCenter EU"]

 Item Serial Size

 1 4 7

Calculations Across Array Elements:We can do calculations across the elements in an array using the

apply() function.

Syntax: apply(x, margin, fun)

Where

x is an array.

margin is the name of the data set used.

fun is the function to be applied across the elements of the array.

Ex:

>A=array(1:6,dim=c(2,3))

>apply(A, c(2), sum)

[1] 3 7 11

>apply(A, c(2), function(x) x+3)

 [,1] [,2] [,3]

[1,] 4 6 8

[2,] 5 7 9

Exp. 5: Demonstrate Data frames in R

Aim: To create a Data frame, access and manipulate the elements of a Data frame

A data frame is a table or a two-dimensional array-like structure in which each column contains

values of one variable and each row contains one set of values from each column.Following are the

characteristics of a data frame.

 The column names should be non-empty.

 The row names should be unique.

 The data stored in a data frame can be of numeric, factor or character type.

 Each column should contain same number of data items.

 For Example:

 emp_id emp_name salary

 11 Rick 623.30

12 Dan 515.20

13 Michelle 611.00

 14 Ryan 729.00

15 Gary 843.25

Creating and Exploring a Dataframe: A data frame is created with the data.frame() function. Once

created or imported, the data frame's structure and statistical summary can be seen using str() and

summary() functions.

Syntax: mydata<- data.frame(col1, col2, col3,…)

where col1, col2, col3, … are column vectors of any type (such as character,numeric,or

logical).

Ex:

 >emp_id = 11:15

>emp_name = c("Rick","Dan","Michelle","Ryan","Gary")

>salary = c(623.3,515.2,611.0,729.0,843.25)

>emp.data=data.frame(emp_id, emp_name, salary)

>emp.data

emp_id emp_name salary

1 11 Rick 623.30

2 12 Dan 515.20

3 13 Michelle 611.00

4 14 Ryan 729.00

5 15 Gary 843.25

>str(emp.data)

'data.frame': 5 obs. of 3 variables:

 $ emp_id :int 11 12 13 14 15

 $ emp_name: chr "Rick" "Dan" "Michelle" "Ryan" ...

 $ salary :num 623 515 611 729 843

>summary(emp.data)

emp_id emp_name salary

Min.:11 Length:5 Min. :515.2

 1st Qu.:12 Class :character 1st Qu.:611.0

Median :13 Mode :character Median :623.3

 Mean :13 Mean :664.4

 3rd Qu.:14 3rd Qu.:729.0

 Max. :15 Max. :843.2

>names(emp.data) # Column Names

[1] "emp_id" "emp_name" "salary"

>rownames(emp.data) #Row Names if Present

[1] "1" "2" "3" "4" "5"

>dim(emp.data) #Dimensions

[1] 5 3

>nrow(emp.data) #No of Rows in DF

[1] 5

>ncol(emp.data) #No of Columns in DF

 [1] 3

 >head(emp.data,3) # Starting Rows

 emp_id emp_name salary

1 11 Rick 623.3

2 12 Dan 515.2

3 13 Michelle 611.0

>tail(emp.data) #Ending Rows

emp_id emp_name salary

1 11 Rick 623.30

2 12 Dan 515.20

3 13 Michelle 611.00

4 14 Ryan 729.00

5 15 Gary 843.25

Accessing a Dataframe:One can accessa specific column or a group of columns, a specific row or a

group of rows, or a single element using the indices or the names.

 Ex:

 >emp.data[1:2]

 emp_id emp_name

1 11 Rick

2 12 Dan

3 13 Michelle

4 14 Ryan

5 15 Gary

>emp.data[c("emp_name","salary")]

emp_name salary

1 Rick 623.30

2 Dan 515.20

3 Michelle 611.00

4 Ryan 729.00

5 Gary 843.25

>emp.data[[1]]

[1] 11 12 13 14 15

>emp.data[[“emp_name”]]

[1] "Rick" "Dan" "Michelle" "Ryan" "Gary"

>emp.data$emp_name

[1] "Rick" "Dan" "Michelle" "Ryan" "Gary"

>emp.data$1 #Wont Work

Error: unexpected numeric constant in "emp.data$1"

>emp.data[,1]

[1] 11 12 13 14 15

>emp.data[1,]

emp_id emp_name salary

1 11 Rick 623.3

>emp.data[1:3,]

emp_id emp_name salary

1 11 Rick 623.3

2 12 Dan 515.2

3 13 Michelle 611.0

>emp.data[1, “emp_name”]

[1] "Rick"

>emp.data[1, 2]

[1] "Rick"

>emp.data[1:3, 2]

[1] "Rick" "Dan" "Michelle"

>emp.data[1, 2:3]

emp_name salary

1 Rick 623.3

We can expand a dataframe by adding one or more columns to an existing dataframe, but new

rows cannot be added directly. But can create a separate dataframe with the new rows and use rbind to

join old and new dataframes.

>emp.data$dept<-c("IT","Operations","IT","HR","Finance") #Adding a new column.

>emp_id = 16:18 #Adding new Rows

>emp_name = c("Rashmi","Pranab","Tushar")

>salary = c(578.0,722.5,632.8)

>dept = c("IT","Operations","Finance")

>emp.newdata=data.frame(emp_id,emp_name, salary, dept)

>emp.finaldata=rbind(emp.data,emp.newdata #Updated new dataframe

Exp. 6: Demonstrate Lists in R.

Aim: To create a List, access and manipulate the elements of a List.

Lists are heterogeneous data structure objects of R, which contain elements of different types like

− numbers, strings, vectors, etc.

Creating and Accessing of Lists: List is created using list() function.The list elements can be given

names and they can be accessed using these names.List elements can be access using the index or

using names if assigned.List elements can be manipulated using the index or using names if

assigned.Insertion can be done at the end by using the index or a name.

 Ex:

 >L=list("Red", "Green", c(21,32,11), 119.1)

 >L

 [[1]]

[1] "Red"

[[2]]

[1] "Green"

[[3]]

[1] 21 32 11

[[4]]

[1] 119.1

 >names(L) <- c("c1", "c2", "v", "N")

 >L

 $c1

[1] "Red"

$c2

[1] "Green"

$v

[1] 21 32 11

$N

[1] 119.1

>L[1]

$c1

[1] "Red"

>L[2]

$c2

[1] "Green"

>L[“c1”]

$c1

[1] "Red"

>L[[1]] #[] gives a sublistwhere as [[]] gives elements of list.

[1] "Red"

>L[[2]]

[1] "Green"

>L$c1

[1] "Red"

 >L[5]=100 #Replaces the 5th element of list with 100.

 >L[1]=NULL #Delets the 1st element of list L.

 >merged.list<- c(list1,list2) #Creates a new list by merging elements of both

lists.

 >unlist(L)

 c1 c2 v1 v2 v3 N

 "Red" "Green" "21" "32" "11" "119.1"

Add-on Exp: Some Basic Fundamentals of R

Aim: To understand how to read inputs during runtime from the user and print outputs. Also, we are

going to see how to write scripts.

R has readline() and scan() methods to take input from the user during runtime. It also has print(),

sprintf(), and cat() methods to print output.

readline(): Takes only one input in string format.Type conversion functions must be used to convert

the inputs to the desired data type.

Syntax: var=readline(“Message to User”)

Ex:

>s=readline(“Enter Your Name: ”)

Enter Your Name: VASAVI

>s

[1] "VASAVI"

>a=readline(“Enter a Number: ”)

Enter a Number: 3

>a

[1] "3"

>class(a)

[1] "character"

>as.integer(a)

[1] 3

scan(): This method reads data in the form of a vector or list. The interpreter will take inputs

continuously till user presses the Enter key twice. The inputs expected are, by default, numeric.

Syntax: var=scan(file=“stdin”,what=“numeric”) or var=scan()

Ex:

>a=scan() #Enter a vector of numeric type

1: 1

2: 2

3: 3

4: 2

5:

Read 4 items

>a

[1] 1 2 3 2

print(): Most common method to print output in R.

 Syntax: print(<a string>) or print(<var>)

Ex:

>print(“CSE”)

[1] "CSE"

>print(a)

[1] 1 2 3 2

>s= "VASAVI"

>print(paste(“My name is”, s))

[1] "My name is VASAVI"

>a=4

>print(sprintf(“The Number is %d”,a)) # To print output as in C language.

[1] "The Number is 4"

cat(): Another way to print output in R. Converts the arguments in character format.

Syntax: cat(arg1, arg2, arg 3,…)

Ex:

>Dep= "CSE"

>cat(“Department of ”,D)

Department of CSE

R Scrips: Use any text editor or inbuilt script editor to type in the code.Save the file using ".R"

extension.Run the script by clicking on the source.

Exp. 7: Illustrate the following controls statements in R.

a) if and else b)ifelsec)switch

Aim:To understand the working of different control statements in R.

Control statements allow us to control the flow of our programming and cause different things to

happen depending on the values of tests. The test's result is logical TRUE or FALSE.The main control

statements are

 if-else

 ifelse

 switch.

IF-ELSE: A control structure with if-else can have an “if” block followed by multiple optional “else

if” blocks and followed by an optional “else” block.We can have a control structure with just an if

block.

 Syntax:

 if (Boolean Expression){

 <Code Block 1>

} else if(Boolean Expression){

 <Code Block 2>

 }

 :

 :

}else if (Boolean Expression){

 <Code Block n-1>

 }else{

 <Code Block n>

 }

 Ex:

 Script: age.R

 age=readline("Eneter Age: ")

age=as.integer(age)

if (age<=12){

print("Child")

}else if(age<=19){

print("Teenager")

}else if (age<=30){

print("Adult")

}else if(age<=45){

print("Middle Aged")

}else {

print("Old")

 }

 Console:

 Enter Age: 25

[1] "Adult"

ifelse(): A ternary statement that is a one-line equivalent of a simple if-else structure.

 Syntax: ifelse (Boolean Expression, <Exp 1>,<Exp 2>)

 Ex: >a=-8

>ifelse (a>=0, print("+ve"),print("-ve"))

[1] "-ve"

switch(): If we have multiple cases to check, writing “else if” repeated, can be cumbersome and

inefficient.This is where the switch is most useful. There are basically two ways in which one of the

cases is selected. One is using the Index to select a case. If the cases are values like a character vector,

and the expression is evaluated to a number than the expression's result is used as an index to select

the case.When the cases have both case value and output value like ["case_1"="value1"], then the

expression value is matched against case values. If there is a match with the case, the corresponding

value is the output.

 Syntax: switch(expression, case1, case2, case3....)

 Ex:

 >switch(3,"Shubham","Nishka","Gunjan","Sumit")

[1] "Gunjan"

 Script:

 a=10

b=2

cat("Enter Your Choice:\n1 for add \n2 for sub \n3 for Div \n4 for mul")

y=readline()

switch(y,

 "1"=cat("Addition=",a+b),

 "2"=cat("Subtraction =",a-b),

 "3"=cat("Division= ",a/b),

 "4"=cat("multiplication =",a*b)

)

 Console:

Enter Your Choice:

1 for add

2 for sub

3 for Div

4 for mul

2

Subtraction = 8

Exp. 8: Demonstrate for and while loops in R

Aim: To understand the working of loops in R

Loops: There may be a situation when you need to execute a block of code several times. In general,

statements are executed sequentially.A loop statement allows us to execute a statement or group of

statements multiple times.R programming language provides for, while, and repeat to handle looping

requirements.

For: Unlike traditional languages, in R loops, especially for loops are used to iterate over elements of

a vector, list or data.frame.

 Syntax: for (value in vector) {

 statements

 }

 Ex:

 Script:

V=c(“a”, “b”, “c”, “d”)

 for (x in V) {

 print(x)

 }

 Console:

 [1] "a"

[1] "b"

[1] "c"

[1] "d"

While: The while loop executes the same code repeatedly until a stop condition is met.

 Syntax: while (Boolean expression) {

 statements

 }

 Ex:

 Script:

i=1

while (i<=5) {

print(i)

 i=i+1

}

 Console:

[1] 1

[1] 2

[1] 3

[1] 4

[1] 5

Loop control statements change execution from its normal sequence.R supports break & next

control statements.When the break statement is encountered inside a loop, the loop is immediately

terminated.The next statement in R programming language is useful when we want to skip the current

iteration of a loop without terminating it.

 Ex:

 Script (break):

i=0

while (TRUE) {

print(i)

 i=i+2
if (i==10){

break

 }

}

Console:

[1] 0

[1] 2

[1] 4

[1] 6

[1] 8

Script(next):

for(i in 1:10){
if(i%%2){

next

 }

print(i)
}

Console:

[1] 2

[1] 4

[1] 6

[1] 8

[1] 10

Exp. 9: Demonstrate importing and exporting data using R

Aim: To understand the process of importing and exporting of data in R.

Data comes in different formats from different sources.There are numerous ways to get data, the

most common is probably reading comma separated values (CSV) files.We have to import data from

various types of files.The most important ones apart from CSV are delimited files (.txt), .xlsx. All the

imported data was saved as dataframe in R.

IRIS CSV FILE

IRIS TAB DELIMITED FILE

IRIS XLSX FILE

The best way to read data from a CSV file1 is to use read.table.One can also use read.csv which are

wrapper around read.table with the sep argument preset to a comma (,).read.delim() is another

wrapper on read.table with the sep argument preset to a tab space (\t)

Syntax: read.table(file, header = FALSE, sep = "", dec = ".")

Ex:

>iris_csv1=read.table("iris.csv", header = TRUE, sep=",")

 Syntax: read.csv(file, header = TRUE, sep = ",", dec = ".", ...)

Ex:

>iris_csv2=read.csv("iris.csv")

 Syntax: read.delim(file, header = TRUE, sep = "\t", dec = ".", ...)

Ex:

>iris_tab=read.delim("iris.txt")

>str(iris_tab) #str(iris_csv1) or str (iris_csv2)

'data.frame': 150 obs. of 5 variables:

 $ ï..SepalLengthCm: num 5.1 4.9 4.7 4.6 5 5.4 4.6 5 4.4 4.9 ...

 $ SepalWidthCm : num 3.5 3 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1 ...

 $ PetalLengthCm : num 1.4 1.4 1.3 1.5 1.4 1.7 1.4 1.5 1.4 1.5 ...

 $ PetalWidthCm : num 0.2 0.2 0.2 0.2 0.2 0.4 0.3 0.2 0.2 0.1 ...

 $ Species : chr "Iris-setosa" "Iris-setosa" "Iris-setosa" "Iris-setosa" ..

The readr package provides a family of functions for reading text files.The most commonly used

will be read_delim for reading tab delimited files.Note that eventhoughone can use read.table() or

read.csv() or read.delim() for the same but readr package reads data at high speed. To use readr, first

import the package readr using library(readr) command.If delimiter was not mentioned, the

read_delim() function will try to find it out on its own. Note that, one has to install the package if not

done erlier using install.packages() command.

 Syntax: read_delim(file, delim = NULL, col_names = TRUE, ...)

Ex:

>read_tab=read_delim("iris.txt")

The readxl package provides functions for reading .xls, .xlsx files.

Syntax: read_excel(file, sheet=NULL, range=NULL, …)

Ex:

>iris_xlsx=read_excel("iris.xlsx")

One can import data from a website using the read.table, read.csv, read.delim.

Ex:

 >theUrl<- "http://www.jaredlander.com/data/TomatoFirst.csv"

 >tomato <-read.table(file=theUrl, header=TRUE, sep=",")

 >str(tomato)

'data.frame': 16 obs. of 11 variables:
 $ Round : int 1 1 1 1 2 2 2 2 3 3 ...

 $ Tomato : chr "Simpson SM" "Tuttorosso (blue)" "Tuttorosso (green)" "La

Fede SM DOP" ...

 $ Price : num 3.99 2.99 0.99 3.99 5.49 4.99 3.99 3.99 4.53 NA ...
 $ Source : chr "Whole Foods" "Pioneer" "Pioneer" "Shop Rite" ...

 $ Sweet : num 2.8 3.3 2.8 2.6 3.3 3.2 2.6 2.1 3.4 2.6 ...

 $ Acid : num 2.8 2.8 2.6 2.8 3.1 2.9 2.8 2.7 3.3 2.9 ...

 $ Color : num 3.7 3.4 3.3 3 2.9 2.9 3.6 3.1 4.1 3.4 ...

 $ Texture : num 3.4 3 2.8 2.3 2.8 3.1 3.4 2.4 3.2 3.3 ...

 $ Overall : num 3.4 2.9 2.9 2.8 3.1 2.9 2.6 2.2 3.7 2.9 ...
 $ Avg.of.Totals: num 16.1 15.3 14.3 13.4 14.4 15.5 14.7 12.6 17.8 15.3 ...

 $ Total.of.Avg :num 16.1 15.3 14.3 13.4 15.2 15.1 14.9 12.5 17.7 15.2 ...

We can use any of the following methods to write data into a file.

• write.table()

• write.csv()

• write_delim()

• write_csv()

• write_tsv()

• write.xlsx()

Syntax: write.table(x, file, append = FALSE, sep = " ", dec = ".", row.names = TRUE,

col.names = TRUE)

Ex:

>write.table(iris_csv,"irisv2.csv",sep=",",row.names = FALSE)

Syntax: write.csv(x, file, append = FALSE, sep = " ,", dec = ".", row.names = TRUE,

col.names = TRUE, …)

Ex:

>write.csv(iris_csv2,"irisv3.csv")

Syntax: write_delim(x, file, delim=" ", …)

Ex:

>write_delim(iris_csv,"irisv2.txt",delim=",")

Syntax: write.xlsx(x, file, sheetname="Sheet1", col.names = TRUE, row.names = TRUE,

append = FALSE)

Ex:

>write.xlsx(iris_tab,"irisv2.xls")

>write.xlsx(iris_tab,"irisv2.xlsx")

Exp. 10: Illustrate the descriptive statistics using summary() in R

Aim: To generate the statistical measurements for a given dataset using summary() method in R.

A descriptive statistic is a summary statistic that quantitatively describes or summarizes features

from a collection of information.They helps describe, show or summarize data in a meaningful way

such that, for example, patterns might emerge from the data.Descriptive statistics do not, however,

allow us to make conclusions beyond the data we have analyzed or reach conclusions regarding any

hypotheses we might have made, they are simply a way to describe our data.

Descriptive statistics are very important because if we simply presented our raw data it would be

hard to visualize what the data was showing, especially if there was a lot of it.Descriptive statistics

therefore enables us to present the data in a more meaningful way, which allows simpler interpretation

of the data.

Typically, there are two general types of statistic that are used to describe data:

1. Measures of central tendency: these are ways of describing the central position of a frequency

distribution for a group of data.The most common measures of central tendency are the

arithmetic mean, the median, and the mode.

2. Measures of spread: these are ways of summarizing a group of data by describing how spread

out the scores are. Measures of spread include the range, quartiles and the interquartile range,

variance and standard deviation.

The descriptive statistic measures can be obtained by using the functions like mean(), median(),

range(), sd(), quintile(), etc.

 Ex:

 > V

[1] 1 2 3 4

>mean(V)

[1] 2.5

>mean(iris$Sepal.Length)

[1] 5.843333

>sd(iris$Sepal.Width)

[1] 0.4358663

>quantile(iris$Petal.Width)

 0% 25% 50% 75% 100%

0.1 0.3 1.3 1.8 2.5

R comes with an inbuilt function summary(), that calculates basic summary statistics for all

numerical features in a data.frame. But generating and observing the summery statistics of features

with respect to different classes will allow us to find out which features are more important.Fo

example, if we want to create a classification model, Petal.Length has more clear boundary between

the three classes.

 Ex:

Exp. 11:Demonstrate the following statistical distribution functions in R:

 a. Normal Distribution

 b. Binomial Distribution

 c. Poisson Distribution

 d. Chi-Square Distribution

Aim: To understand and use various statistical distributions of data

A probability distribution describes how the values of a random variable are distributed.

Forexample, the collection of all possible outcomes of a sequence of coin tossing is known to follow

the Binomial distribution. The means of sufficiently large samples of a data population are known to

resemble the Normal distribution.These distributions can be used to make statistical inferences on

the entire data population as a whole.

R has functions available for most of the famous statistical distributions.

 Prefix the name as follows:

• With d for the density or probability mass function (pmf)

• With p for the cumulative distribution function (cdf)

• With q for quantiles

• With r for random number generation

Distribution Density/pmf cdf Quantiles Random Numbers

Normal dnorm() pnorm() qnorm() rnorm()

Binomial dbinom() pbinom() qbinom() rbinom()

Poisson dpois() ppois() qpois() rpois()

Chi-square dchisq() pchisq() qchisq() rchisq()

a. Normal Distribution

Normal Distribution is a probability function used in statistics that tells about how the data

values are distributed. It is the most important probability distribution function used in statistics

because of its advantages in real case scenarios. For example, the height of the population, shoe size,

IQ level, rolling a dice, and many more.It is generally observed that data distribution is normal when

there is a random collection of data from independent sources. The graph produced after plotting the

value of the variable on x-axis and count of the value on y-axis is a bell-shaped curve graph.

The graph signifies that the peak point is the mean of the data set and half of the values of data

set lie on the left side of the mean and other half lies on the right part of the mean, telling about the

distribution of the values.The graph is symmetric distribution.

In R, there are 4 built-in functions to generate Normal distribution:

 dnorm(x, mean, sd,)

 pnorm(q, mean, sd)

 qnorm(p, mean, sd)

 rnorm(n, mean, sd)

– x,q represents the vector of quantiles

– p is vector of probabilities

– n is number of observations

– mean(x) represents the mean of data set x. (Default value:0)

– sd represents the standard deviation of data set x (Default value:1)

dnorm(x, mean, sd)

dnorm() function in R programming measures density function of distribution. In

statistics, it is measured by below formula-

where, μ is mean and σ is standard deviation.

> x = seq(-15, 15, by=0.1)

> y = dnorm(x, mean(x), sd(x))

>plot(x,y)

pnorm(q, mean, sd)

pnorm() function is the cumulative distribution function which measures the

probability that a random number takes a value less than or equal to x, i.e., in statistics it is

given by-

> x <- seq(-10, 10, by=0.1)

> y <- pnorm(x, mean = 2.5, sd = 2)

>plot(x,y)

qnorm(p, mean, sd)

This function takes the probability value and gives a number whose cumulative value matches the

probability value.It is useful in finding the percentiles of a normal distribution

> x <- seq(0, 1, by = 0.02)

> y <- qnorm(x, mean(x), sd(x))

>plot(x, y)

rnorm(n, mean, sd)

rnorm() function in R programming is used to generate a vector of random numbers which

are normally distributed

Create a vector of 1000 random numbers with mean=90 and sd=5

> x <- rnorm(1000, mean=90, sd=5)

>hist(x)

b. Binomial distribution in R

The binomial distribution is a discrete distribution and has only two outcomes i.e. success or

failure.The previous outcome does not affect the next outcome.It is used in many real-life scenarios

such as in determining whether a particular lottery ticket has won or not, whether a drug is able to

cure a person or not, for analyzing the outcome of a dice, etc.In statistics, it is measured by below

formula:

We have four functions for handling binomial distribution in R:

 dbinom(x, size, prob)

 pbinom(q, size, prob)

 qbinom(p, size, prob)

 rbinom(n, size, prob)

– x, q represents the vector of quantiles

– p is vector of probabilities

– n is number of observations

– size is number of trials (zero or more)

– prob is probability of success on each trial

dbinom(x, size, prob) -This function is used to find probability at a particular value for a data that

follows binomial distribution i.e. it finds:

 P(X = x)

Eg.1.

Probability of getting 3 when a dice is thrown 13 times

>a = dbinom(3, size = 13, prob = 1 / 6)

>print(a)

[1] 0.2138454

Eg.2.

> x=c(1:6)

>probs<- dbinom(x, 10, 1 / 6)

>print(probs)

[1] 0.323011166 0.290710049 0.155045360 0.054265876 0.013023810 0.002170635

>plot(x, probs, type = "l")

pbinom(q, size, prob) -It is used to find the cumulative probability of a data following binomial

distribution till a given value i.e. it findsP(X <= q)

Probability of getting 26 or less heads from 51 tosses of a coin

> x <- pbinom(26,51,0.5)

>print(x)

[1] 0.610116

qbinom(p, size, prob) -This function takes the probability value and gives a number whose

cumulative value matches the probability value

How many heads will have a probability of 0.25 when a coin is tossed 51 times

> x <- qbinom(0.25,51,1/2)

>print(x)

[1] 23

rbinom(n, size, prob)-This function generates required number of random values of given probability

from a given sample

Find 8 random values from a sample of 150 with probability of 0.4

> x <- rbinom(8,150,0.4)

>print(x)

[1] 58 52 50 64 61 38 60 52

>hist(x)

c. Poisson distribution in R

Poisson distribution: It is the probability distribution of independent event occurrences in an interval.

If λ is the mean occurrence per interval, then the probability of having x occurrences within a given

interval is:

f(x)=
𝝀𝒙𝒆−𝝀

𝒙!
where x=0,1,2,3,…

There are four Poisson distribution functions available in R:

 dpois(x, lambda)

 ppois(q, lambda)

 qpois(p, lambda)

 rpois(n, lambda)

dpois(x,lambda)– It calculates the probability of a random variable that is available within a certain

range.

 If there are five cars crossing a bridge per minute on average, find the probability of having 3 cars

crossing the bridge in a particular minute

> y=dpois(3, lambda = 5)

> print(y)

[1] 0.1403739

ppois(q, lambda) –It calculates the probability of a random variable that will be equal to or less than

a number

 If there are twelve cars crossing a bridge per minute on average, find the probability of having

upto 16 cars crossing the bridge in a particular minute

> c=ppois(16,lambda=12)

> print(c)

 [1] 0.89870

qpois(p, lambda)- It allows obtaining the corresponding Poisson quantiles for a set of probabilities

 The quantile 0.75 of a Poisson distribution for λ =10:

> h=qpois(0.75, lambda = 10)

>print(h)

[1] 12

rpois(n,lambda)-To draw n observations from a Poisson distribution

 To obtain 10 random observations from a Poisson distribution with mean = 4

> k=rpois(10, lambda = 4)

>print(k)

[1] 2 2 5 3 2 2 4 5 3 6

d. Chi-Square distribution

It is the distribution of the sum of squared standard normal deviates. A standard normal deviate is a

random sample from the standard normal distribution.The degrees of freedom of the distribution is

equal to the number of standard normal deviates being summed. The Chi Square distribution is very

important because many test statistics are approximately distributed as Chi Square

Formula : V=X1
2 +X2

2 + . . . +Xm
2 ~ χ(m)

2 where m is degrees of freedom

 dchisq(x, df)

 pchisq(q, df)

 qchisq(p, df)

 rchisq(n, df)

where

x, q -vector of quantiles

p -vector of probabilities

n -number of observations

df-degrees of freedom (non-negative, but can be non-integer).

dchisq(x, df)

>df = 6

> a=dchisq(4,df)

>print(a)

[1] 0.1353353

>vec<- 1:4

> a=dchisq(vec,df)

>print(a)

[1] 0.03790817 0.09196986 0.12551072 0.13533528

>df = 5

>k=pchisq(5, df) # Prob. for <=5

>print(k)

[1] 0.5841198

qchisq(p, df)

> qchisq(0.95, df=7) #7 degrees of freedom

[1] 14.067

The 95thpercentile of the Chi-Squared distribution with 7 degrees of freedom is 14.067

rchisq(n, df)

> x=rchisq(10,df=5)

>print(x)

[1] 4.029649 3.493405 3.376066 5.223755 5.727549 5.730031 3.331059 5.122672

 [9] 4.035966 4.965683

>hist(x)

Exp. 12:Illustrate the following basic graphics in R:

 a. Bar plots

 b. Pie Charts

 c. Histograms

 d. Kernel density plots

 e. Boxplots

 f. Dotplots

Aim: To understand and use basic graphics in R

a: Bar plots in R

A bar chart represents data in rectangular bars with length of the bar proportional to the value of the

variable. R uses the function barplot() to create bar charts. R can draw both vertical and horizontal

bars in the bar chart.

Syntax:

barplot(height,xlab,ylab,main,names.arg,col)

where

heightis a vector or matrix containing numeric values

xlab is the label for x axis

ylab is the label for y axis

main is the title of the bar chart

names.arg is a vector of names appearing under each bar

col is used to give colors to the bars in the graph

Example:

>H <- c(7,12,28,3,41)

>M <- c("Mar","Apr","May","Jun","Jul")

>barplot(H, names.arg=M, xlab="Month",ylab="Revenue", col="red", main="Revenue chart")

>H <- c(7,12,28,3,41)

>M <- c("Mar","Apr","May","Jun","Jul")

>C <-c("red","blue","black","yellow","green")

>jpeg(file="monthly_revenue.jpeg") # pdf / png

>barplot(H, names.arg=M, xlab="Month",ylab="Revenue", col=C, main="Revenue chart")

>dev.off() #jpeg image is created in the current working directory

Stacked Barplot / Grouped Barplot

colors = c("green","red","blue")

months = c("Mar","Apr","May")

regions = c("East","West","North")

values = matrix(c(2,9,3,11,9,4,8,7,3), nrow=3, byrow=TRUE)

png(file ="barchart_stack.png")

barplot(values, main=“Total Revenue",names.arg=months,

xlab="month",ylab="revenue",col=colors) #beside=TRUE for grouped barplot

legend("topright", regions, cex = 1.3, fill=colors)

dev.off()

Stacked Barplot

Grouped Barplot

b: Pie charts in R

A pie-chart is a representation of values as slices of a circle with different colours

Syntax:

pie(x, labels, radius, main, col, clockwise)

where

x is a vector containing the numeric values used in the pie chart.

labels is used to give description to the slices.

radius indicates the radius of the circle of the pie chart.(−1 to +1).

main indicates the title of the chart

col indicates the color palette

clockwise is a logical value indicating if the slices are drawnclockwise or

anticlockwise.(default:FALSE)

Example:

> x <- c(21, 62, 10, 53)

>labels<- c("London", "New York", "Singapore", "Mumbai")

>colors=c("red", "green", "blue", "yellow")

>png(file = "city.png")

>pie(x, labels, main = "City Pie Chart", col=colors)

>dev.off()

c: Histograms in R

A histogram represents the frequencies of values of a variable bucketed into ranges. Histogram is

similar to bar chart but the difference is it groups the values into continuous ranges.

Syntax:

 hist(v, main, xlab, xlim, ylim, breaks, col)

where

v is a vector containing numeric values used in histogram

main indicates title of the chart

xlab is used to give description of x-axis

xlim is used to specify the range of values on the x-axis

ylim is used to specify the range of values on the y-axis

breaks is used to mention the width of each bar

col is used to set color of the bars

Example:

> Weight <- c(9,13,21,8,36,22,12,41,31,33,19)

>png(file = "histogram.png")

>hist(Weight, xlab = "Weight", col = "yellow")

>dev.off()

>Weight <- c(9,13,21,8,36,22,12,41,31,33,19)

>png(file = "hist_lims.png")

>hist(Weight,xlab="Weight",col="green",xlim =c(0,50),ylim=c(0,3),breaks=5)

>dev.off()

d: Kernel Density plots in R

Kerneldensity plot is a representation of the distribution of a numeric variable that uses a

kernel density estimate to show the probability density function of the variable. The density() function

is used to compute kernel density estimates

> d=density(iris$Sepal.Length)

>plot(d, main="Density Plot",col="blue")

Filled density plot

> d=density(iris$Sepal.Length)

>plot(d, main="Density Plot")

>polygon(d, col="red")

e: Boxplots in R

Boxplots are a measure of how well distributed is the data in a data set. It divides the data set

into three quartiles.It represents the minimum, maximum, median, first quartile and third quartile in

the data set

Syntax:

boxplot(x, data, notch, names, main)

where

x is a vector or a single list

data is the data frame

notch is a logical value, Set as TRUE to draw a notch.

names are the group labels to be printed under each boxplot

main is used to give a title to the graph

Example:

#png(file = "box_plot.png")

#print(summary(mtcars[1:2]))

>boxplot(mpg ~ cyl, data = mtcars, xlab = "Number of Cylinders", ylab = "Miles Per Gallon",

main="Mileage Data") #notch=TRUE

#dev.off()

f: Dotplotsin R

Renamed as Dotcharts, it draws a Cleveland dot plot. They are an alternative to bar charts or pie

charts.They look somewhat like a horizontal bar chart where the bars are replaced by a dots at the

values associated with each category

Syntax:

dotchart(x, labels, cex, main, xlab)

wherex is either a vector or matrix of numeric values

labelsis a vector of labels for each point

cexis the character size to be used

main is used to give a title to the graph

xlab ,ylab –x and y axis labels

Example:

>dotchart(mtcars$mpg,labels=row.names(mtcars),cex=0.7,main="Gas Mileage for Car

Models",xlab="Miles Per Gallon", ylab="Car Model")

Exp. 13:Illustrate the Correlation and Covariance analysis using R

Aim: To analyze data using Correlation and Covariance measures in R

When dealing with more than one variable, we need to test their relationships with each other.Two

simple measures are:

 Correlation

 Covariance

Correlation using R

Correlation is used to evaluate the association between two or more variables.It is computed as:

rxy =0 => No Correlation

rxy> 0 =>Positive Correlation

rxy< 0 =>Negative Correlation

x and y are two vectors of length n

x̄ and ȳ corresponds to the means of x and y, respectively

Syntax:

cor(x, y , method)

where

x is a numeric vector, matrix or data frame

y is NULL (default) or a vector, matrix or data frame with compatible dimensions to x

method ="pearson" or "kendall" or "spearman" #Default:pearson

 Correlation range is [-1,+1]

Example:

>pcor=cor(airquality$Wind,airquality$Temp)

>print(pcor)

[1] -0.4579879 #Negative Correlation

>corw=cor(women$height,women$weight)

>print(corw)

[1] 0.9954948 # Positive Correlation

>icor=cor(iris[1:4])

>print(icor) #Correlation Matrix

Sepal.LengthSepal.WidthPetal.LengthPetal.Width

Sepal.Length 1.0000000 -0.1175698 0.8717538 0.8179411

Sepal.Width -0.1175698 1.0000000 -0.4284401 -0.3661259

Petal.Length 0.8717538 -0.4284401 1.0000000 0.9628654

Petal.Width 0.8179411 -0.3661259 0.9628654 1.0000000

Covariance using R

Covariance of two variables x and y in a data set measures how the two are linearly related.A

positive covariance would indicate a positive linear relationship between the variables, and a negative

covariance would indicate the opposite.Covariance range is [-∞,+∞]. Covariance of two

variables x and y in a data set is computed as:

Syntax:

cov(x, y , method)

where

x is a numeric vector, matrix or data frame

y is NULL (default) or a vector, matrix or data frame with compatible dimensions to x

method ="pearson" or "kendall" or "spearman" #Default:pearson

>acov=cov(airquality$Wind,airquality$Temp)

>print(acov)

[1] -15.27214

>wcov=cov(women$height,women$weight)

>print(wcov)

[1] 69

>icov=cov(iris[1:4])

>print(icov) #Covariance Matrix

 Sepal.LengthSepal.WidthPetal.LengthPetal.Width

Sepal.Length 0.6856935 -0.0424340 1.2743154 0.5162707

Sepal.Width -0.0424340 0.1899794 -0.3296564 -0.1216394
Petal.Length 1.2743154 -0.3296564 3.1162779 1.2956094

Petal.Width 0.5162707 -0.1216394 1.2956094 0.5810063

#Diagonal values are variance of each attribute

Exp.14: Illustrate the different types of t-tests using R

t-test:

It is called Student's t-test. One of the most common tests in statistics is the t-test, used to determine

whether the means of two groups are equal to each other.Performs one and two sample t-tests on

vectors of data.

t.test() can be used to perform t-tests in R

t-statistic is calculated as:

The assumption for the test is that both groups are sampled from normal distributions with

equal variances. The null hypothesis is that the two means are equal, and the alternative is that they

are not.

Syntax:

t.test(x, y = NULL, alternative = c("two.sided", "less", "greater"), mu = 0, paired = FALSE,

var.equal = FALSE, conf.level = 0.95,…)

where

 x is a numeric vector of data values

 y is an optional numeric vector of data values

 If y is excluded, the function performs a one-sample t-test on the data contained in x, if it is

includedit performs a two-sample t-tests using both x and y

 mu provides a number indicating the true value of the mean (or difference in means if performing

a two sample test) under the null hypothesis

 alternative is a character string specifying the alternative hypothesis:

 "two.sided" (which is the default)

 "greater" or "less" depending on whether the alternative hypothesis is that the mean is

different than, greater than or less than mu, respectively

 paired - a logical value indicating whether a paired t-test is to be done

 var.equal - a logical variable indicating whether to treat the two variances as being equal.

 conf.level- confidence level of the interval

One-Sample t-test:

>data(CO2)

>t1= t.test(CO2$uptake) #Null Hypothesis, mean=0

or

> t1=t.test(CO2$uptake, alternative="t") #two.sided=TRUE, mean=0

>print(t1)

One Sample t-test

data: CO2$uptake

t = 23.063, df = 83, p-value < 2.2e-16

alternative hypothesis: true mean is not equal to 0

95 percent confidence interval:

 24.86622 29.55997

sample estimates:

mean of x

 27.2131

> t2=t.test(CO2$uptake,alternative="g", mu=10) # mean <= 10

>print(t2)

One Sample t-test

data: CO2$uptake

t = 14.588, df = 83, p-value < 2.2e-16

alternative hypothesis: true mean is greater than 10

95 percent confidence interval:

25.25034 Inf

sample estimates:

mean of x

 27.2131

> t3=t.test(CO2$uptake,alternative="l", mu=10) # mean >= 10

>print(t3)

One Sample t-test

data: CO2$uptake

t = 14.588, df = 83, p-value = 1

alternative hypothesis: true mean is less than 10

95 percent confidence interval:

-Inf 29.17585

sample estimates:

mean of x

 27.2131

Two-Sample t-test

>data(CO2)

>t4=t.test(CO2$uptake,CO2$conc) # Welch Two Sample t-test,True mean =0

>print(t4)

Welch Two Sample t-test

data: CO2$uptake and CO2$conc

t = -12.621, df = 83.222, p-value < 2.2e-16

alternative hypothesis: true difference in means is not equal to 0

95 percent confidence interval:

 -472.0467 -343.5271

sample estimates:

mean of x mean of y

27.2131 435.0000

>t5=t.test(CO2$uptake,CO2$conc,alternative="l", mu=12) #True mean >= 12

>print(t5)

Welch Two Sample t-test

data: CO2$uptake and CO2$conc

t = -12.993, df = 83.222, p-value < 2.2e-16

alternative hypothesis: true difference in means is less than 12

95 percent confidence interval:

-Inf -354.0442

sample estimates:

mean of x mean of y

27.2131 435.0000

Note: true mean =mean(x) –mean(y)

Paired t-tests

For testing paired data (for example, measurement on twins, before and after treatment

effects, father and son comparison), we cannot use two-sample t-tests since the independence

assumption is not valid. Instead we need to use a paired t-test. This can be done using the option

paired =TRUE.

Example:

>fheight=c(165,144,178,189,123)

>sheight=c(167,141,191,200,120)

>ht=t.test(fheight,sheight,paired=TRUE) # True Mean=0

>print(ht)

Paired t-test

data: fheight and sheight

t = -1.1744, df = 4, p-value = 0.3054

alternative hypothesis: true difference in means is not equal to 0

95 percent confidence interval:

 -13.456231 5.456231

sample estimates:

mean of the differences

 -4

>ht1=t.test(fheight, sheight, alternative="g", paired=TRUE) # True Mean<=0

>print(ht1)

Paired t-test

data: fheight and sheight

t = -1.1744, df = 4, p-value = 0.8473

alternative hypothesis: true difference in means is greater than 0

95 percent confidence interval:

-11.26081 Inf

sample estimates:

mean of the differences

 -4

Exp. 15 :Illustrate the ANOVA test using R

Aim: To analyze data using ANOVA test in R

ANOVA (ANalysis Of VAriance) test : An ANOVA test is a way to find out if survey or

experiment results are significant. It is used for testing of various groups to see if there is a difference

between them

Examples:

 A group of psychiatric patients are trying three different therapies: counseling, medication

and biofeedback. You want to see if one therapy is better than the others.

 A manufacturer has two different processes to make light bulbs. They want to know if one

process is better than the other.

 Students from different colleges take the same exam. You want to see if one college

outperforms the other

 In R, ANOVA test is done using aov()

Syntax:

aov(formula, data = NULL, ...)

where

formula- formula specifying the model

data - data frame in which the variables specified in the formula will be found

Example:

>require(reshape2)

>data("tips", package="reshape2")

>tipANOVA=aov(tip ~ day-1, tips) #-1 to exclude intercept

>print(tipANOVA)

Call:

aov(formula = tip ~ day, data = tips)

Terms:

day Residuals

Sum of Squares 9.5259 455.6866

Deg. of Freedom 3 240

Residual standard error: 1.377931

Estimated effects may be unbalanced

>print(tipANOVA$coefficients)

(Intercept) daySatdaySundayThur

2.73473684 0.25836661 0.52039474 0.03671477

Alternative way : To use regression

>tiplm=lm(tip ~ day-1, tips) #No intercept term

>print(tiplm)

Call:

lm(formula = tip ~ day - 1, data = tips)

Coefficients:

dayFridaySatdaySundayThur

 2.735 2.993 3.255 2.771

